applications can be given. Molecular orbitals of the molecule in its ground-state minimum geometry having a point group G are calculated. Subsequently, the efficiency factors f_{λ} of section 5 are determined by means of eq 14 for any irreducible representation Γ_{λ} of G. If for particular Γ_{λ} large values of f_{λ} are obtained, those Γ_{λ} are considered to be symmetry species of the relaxation pathway. In order to find which nuclear motions constitute the pathway, contour plots of $\rho_{\lambda}{ }^{00}$ as defined by eq 16 are inspected. By using the criterion for nuclear motions as contained in Figure 1, the form of these plots near the various atoms should indicate molecular geometry changes which make up the energetically favorable relaxation pathway.

8. Discussion

In the previous sections relaxation pathways were considered which lead from the point on the first excited-state surface with ground-state geometry to the excited-state equilibrium geometry. A two-step scheme has been suggested where in the first step the pathway symmetry Γ_{λ} is determined by means of the efficiency factors f_{λ}. In the second step, the favorable relaxation pathway is selected from the manifold of pathways transforming as Γ_{λ} by inspecting plots of the overlap function $\rho_{\lambda}{ }^{00}$. In this section we relate the procedure to previous work, and an attempt is made to identify its limitations. Central to the scheme is the idea that along the pathway the energy lowering is large provided that a large number of higher lying excited states is available to interact with the first excited state. This concept uses the accepted experience that the energy lowering is significant when the dimension of the basis set into which a wave function is expanded is large. ${ }^{35}$

The extension to many excited states also holds for the overlap function $\rho_{\lambda}{ }^{00}$ which results from the transition densities between the first excited-state wave function and the members of the basis set consisting of wave functions of all higher excited states appropriate for interaction. In addition $\rho_{\lambda}{ }^{00}$ contains, in an approximate way, the energy difference between the interacting states. Therefore, the suggested criterion is more general than the original Bader-Pearson concept, where only the most important member in the basis set is used, namely the wave function for the state located above the considered state. Important is the assumption that the first excited state is well approximated by one singlet wave function characterized by the HOMO-LUMO excitation. Implicit in this is that the CI expansion of that state is dominated by the HOMO-LUMO configuration constructed from the SCF ground-state orbitals. This assumption may fail when the first excited state is totally symmetric. In this case the ground-state configuration enters significantly into the CI expansion for the first excited state. Therefore, we conclude the suggested procedure should be more reliable for nontotally symmetric than for totally symmetric first excited states.

Acknowledgment. Many valuable comments and suggestions of Drs. H. Kupka, F. Mark, and G. Olbrich are gratefully appreciated. Many stimulating discussions with Prof. E. A. Halevi are acknowledged.
(35) The relation between an increase of a basis set and the resulting energy lowering is a consequence of the theorem of Hylleraas and Undheim (Hylleraas, E. A.; Undheim, B. Z. Physik 1930, 65, 759) and MacDonald (Mac Donald, J. K. L. Phys. Rev. 1933, 43, 830)

A Symmetry-Based Procedure for the Determination of Molecular Geometry Changes Following Electronic Excitation. 2. Relaxation Pathways for the Excited States of Ethylene, Acetone, Butadiene, and Methylenimine

V. Bachler
Contribution from the Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-4330 Mülheim a.d. Ruhr, Federal Republic of Germany. Received June 29, 1987

Abstract

A qualitative symmetry-based procedure, which permits a determination of probable geometry changes of a molecule occurring after electronic excitation, is demonstrated by determining the known geometry changes for ethylene, acetone, trans-butadiene, and methylenimine. The results are compared with published calculations and experiments.

1. Introduction

In the preceding paper in this issue, ${ }^{1}$ a qualitative procedure was proposed for determining molecular geometry changes following electronic excitation. According to the Frank-Condon principle, vertical excitation produces an excited state of a molecule where the ground-state geometry is still retained. After excitation, the geometry rearranges on the excited-state surface along a relaxation pathway which leads to the excited-state minimum geometry. Such a pathway can be described by a superposition of geometry changes along the various symmetry coordinates, S_{λ}, transforming as the irreducible representations, Γ_{λ}, of the ground-state point group, G. ${ }^{1}$ In order to determine which Γ_{λ} are symmetries for the relaxation pathway, the efficiency factors f_{λ} were proposed. ${ }^{1}$

[^0]\[

$$
\begin{equation*}
f_{\lambda}=\sum_{i=l+1}^{\text {unoce }} \mu \frac{1}{\epsilon_{i}^{00}-\epsilon_{l}^{00}}+\sum_{i=1}^{\infty c c-1} \nu \frac{1}{\epsilon_{h}^{00}-\epsilon_{l}^{00}} \tag{1}
\end{equation*}
$$

\]

The quantities ϵ_{l}^{00} and ϵ_{h}^{00} are the energies of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), respectively. They are calculated at the ground-state geometry which is indicated by the superscript 00 . In the first term of eq $1, i$ ranges over unoccupied molecular orbitals located above the LUMO. In addition the summation is restricted to orbitals which have the proper symmetry, Γ_{μ}, to interact with the LUMO when the pathway is of Γ_{λ} symmetry. In the second term of eq $1, i$ runs over orbitals having lower energy than the HOMO. The sum comprises only those orbitals which belong to the symmetry species, Γ_{ν}, being appropriate for an interaction with the HOMO when the pathway transforms as Γ_{λ}. The form of eq 1 shows that f_{λ} is large provided many orbitals of proper symmetry are present and are energetically close to the

Scheme I. Two Important Forms of the Overlap Function $p_{\lambda}{ }^{\infty}$ Near an Atom A Located at the Origin of the Coordinate Systems ${ }^{a}$

ρ^{00} near A	result
	favourable (a)
	unfavourable (f)

${ }^{a}$ Type (a) favors a motion of the atom; type (f) is unfavorable.
frontier orbitals. In the preceding paper it was shown that eq 1 can be used to calculate the f_{λ} value for any irreducible representation, Γ_{λ}, of G. Those Γ_{λ} for which large values are obtained are considered as symmetries for a relaxation pathway. Further, it was proposed that after finding the relevant Γ_{λ}, the pathway could be more closely specified by inspecting the form of the overlap function $\rho_{\lambda}{ }^{00}$ given by ${ }^{1}$

$$
\begin{equation*}
\rho_{\lambda}^{00}=\sum_{i=l+1}^{\text {unoce }} \mu \frac{\varphi_{i}^{00} \varphi_{l}^{00}}{\left(\epsilon_{i}^{00}-\epsilon_{l}^{00}\right)^{1 / 2}}-\sum_{i=1}^{\text {occ-1 }} \nu \frac{\varphi_{h}^{00} \varphi_{i}^{00}}{\left(\epsilon_{h}^{00}-\epsilon_{i}^{00}\right)^{1 / 2}} \tag{2}
\end{equation*}
$$

Here, $\varphi_{h}{ }^{00}$ and φ_{l}^{00} are the HOMO and LUMO, respectively, and the index i runs over the same set of orbitals as in eq 1 . For the applications below, the forms (a) and (f) of $\rho_{\lambda}{ }^{00}$ of the preceding paper in this issue are important. The relevant conclusions are repeated in Scheme I. Consider an atom located in Scheme I at the origin of the coordinate system. If the form of $\rho_{\lambda}{ }^{00}$ is like case (a), the atom should move along the x-axis. However, forms like case (f) indicate that the position of the atom should remain unchanged. Inspection of $\rho_{\lambda}{ }^{\infty 0}$ near all atoms by means of Scheme I leads to a qualitative identification of the relaxation pathway. In the following sections we refer to the cases (a) and (f) without explicitly mentioning that Scheme I and the conclusions contained therein are used.

The purpose of this paper is to illustrate how the efficiency factors, f_{λ}, supplemented by the overlap functions, $\rho_{\lambda}{ }^{\infty}$, can be used for a qualitative identification of the relaxation pathways. Molecules are treated for which detailed calculations and/or experiments are available in the literature, and it is shown how they agree with the qualitative results.

2. Ethylene in the $\pi-\pi^{*}$ State

Potential energy surfaces for ground and many excited states of ethylene have been calculated by accurate quantum chemical methods. ${ }^{2}$ These calculations provide a sound basis for testing the proposed qualitative procedure. The ground-state $D_{2 h}$ equilibrium geometry was adopted, and molecular orbitals and their energies were calculated by using the $4-31 \mathrm{G}$ basis set. ${ }^{3}$ Ethylene was assumed to be electronically excited to the $\pi-\pi^{*} \mathrm{~B}_{3 \mathrm{u}}$ state. Following this excitation, the $D_{2 h}$ geometry changes along a pathway on the $\pi-\pi^{*}$ surface which is considered as a linear combination of various symmetry coordinates being symmetry adapted in $D_{2 h}$. Our aim is to determine those symmetry coordinates which constitute the relaxation pathway.

Firstly, we calculate the f_{λ} for those Γ_{λ} of $D_{2 h}$ which are irreducible representations of ethylene vibrations. The symmetries of vibrations are listed in the first column of Table I and in the second column, the symmetries of LUMO and HOMO of ethylene are given. The third column contains molecular orbitals which interact with the LUMO and HOMO, respectively, when a geometry distortion of Γ_{λ} symmetry occurs. The f_{λ} values, given in the fourth column, indicate that all in-plane $a_{g}, b_{1 g}, b_{2 u}$, and $\mathrm{b}_{3 \mathrm{u}}$ modes of ethylene are ineffective because either f_{λ} is small or orbitals with proper symmetry for interaction are absent. The

[^1]Table I. Ethylene in Its First $\pi-\pi^{*}$ State ${ }^{a}$

Γ_{λ}	MO	interacting with MO	f_{λ}
a_{g}	$1 b_{2 g}$	$2 b_{2 g}$	1.261
a_{u}	$1 b_{2 g}$	$2 b_{2 u} 3 b_{2 u} 4 b_{2 u}$	18.143
	$1 b_{1 u}$	$1 b_{1 g}$	
$b_{1 g}$			
$b_{1 u}$	$1 b_{2 g}$	$4 b_{3 u} 5 b_{3 u} 6 b_{3 u}$	19.617
		$7 b_{3 u} 8 b_{3 u}$	
$b_{2 g}$	$1 b_{1 u}$	$3 a_{g} 2 a_{g}$	17.807
	$1 b_{2 g}$	$4 a_{g} 5 a_{g} 6 a_{g}$	
$b_{2 u}$	$1 b_{1 u}$	$7 a_{g}$	$2 b_{3 u}$
$b_{3 u}$	$1 b_{2 g}$	$2 b_{1 u}$	

- The symmetries of distortions, Γ_{λ}, the interacting orbitals, and the corresponding efficiency factors f_{λ} are given. Ethylene relaxes along $a_{u}, b_{1 u}$, and $b_{2 g}$ out-of-plane coordinates.

Figure 1. Contour lines of $\rho_{\mathrm{au}}{ }^{\infty}$ for ethylene in a plane parallel to the molecular x, y-plane and intersecting the z-axis at $z=0.5 \mathrm{au}$. The projection of the molecular skeleton onto the plane and the resulting twist about the double bond are also shown.
large f_{λ} values indicate that only the three out-of-plane modes a_{u}, $b_{1 u}$, and $b_{2 g}$ will be favorable directions for a relaxation pathway.

Secondly, we inspect the form of the overlap functions for the relevant symmetries. Our objective is to specify the relaxation pathway in more detail. For the a_{u} symmetry coordinate, contour lines of $\rho_{\mathrm{a}_{\mathrm{a}}}{ }^{\infty}$ are depicted in Figure 1 in a plane which is parallel to the molecular x, y-plane; the drawing plane intersects the z-axis at a value of 0.5 au . The projection of the molecular skeleton onto that plane is also depicted. Continuous and dashed lines in Figure 1 designate positive and negative functional values, respectively. An equivalent drawing could be made for a plane which is also parallel to the molecular x, y-plane but intersecting the z-axis at -0.5 au. Because $\rho_{\mathrm{a}_{u}}{ }^{\infty}$ is antisymmetric with respect to the molecular plane, positive (negative) functional values would appear in such a drawing in regions where in Figure 1 negative (positive) values are present. By using this antisymmetric property, we realize that the unfavorable case (f) holds for the form of $\rho_{a_{u}}{ }^{0}$ near the carbon atoms, and their position should remain unchanged. For the hydrogen atoms, however, the favorable case (a) is valid. Moreover, regions with positive and negative values of $\rho_{\mathrm{a}_{\mathrm{u}}}{ }^{00}$ are arranged in space in a way that the well-known twist about the double bond is indicated.

The f_{λ} values of Table I also show that a pathway transforming as a reducible representation Γ containing $b_{l u}$ and $b_{2 g}$ symmetry coordinates should be favorable. In Figure 2, contour lines for the overlap function, $\rho_{\Gamma}{ }^{00}$, are depicted by using the same plane as for Figure 1. Because $\rho_{\Gamma}{ }^{00}$ is antisymmetric with respect to the molecular x, y-plane, the favorable case (a) holds for the right

Figure 2. Contour lines for a superposition of $\rho_{\mathrm{b}_{1 u}}{ }^{\infty}$ and $\rho_{\mathrm{b}_{2 \mathrm{z}}}^{\infty}$ for ethylene in the same plane as in Figure 1. The projection of the molecular skeleton onto the plane and the resulting pyramidalization of one carbon atom are indicated.
carbon atom of Figure 2 and the attached hydrogen atoms. The left carbon atom in Figure 2, however, should remain unmoved because the unfavorable case (f) holds. The high functional values near the right carbon atom, and the location of positive and negative values in space, indicate that a favorable pathway involves the pyramidalization of only one carbon atom in ethylene (see Figure 2). If the energy of the perpendicular $D_{2 d} S_{1}$ state of ethylene is calculated by using natural S_{1} orbitals in the CI treatment, a further energy decrease of $\approx 10 \mathrm{kcal}$ is derived when one carbon atom is pyramidalized by $40^{\circ} .4$ Such a pyramidalization causes a significant charge separation in the first excited state of ethylene. This is known as the sudden polarization effect, ${ }^{5}$ and its importance in various conjugated polyenes has been pointed out. Its impact on the process of vision has also been discussed. ${ }^{6}$ Thus, our qualitative results, based on the efficiency factors and the form of the overlap functions alone, are corroborated by the results of extensive computations in the literature.

3. Acetone in the $\mathbf{n}-\boldsymbol{\pi}^{*}$ State

Aliphatic ketones undergo a large variety of photoreactions in the liquid ${ }^{7}$ as well as in the gas phase. ${ }^{8}$ Since acetone is the simplest of these, much effort has been directed to determining its geometry changes following electronic excitation. Here, we apply the qualitative procedure of the preceding paper in this issue to investigate how the ground-state geometry of acetone is modified after it has been vertically excited into its $\mathrm{A}_{2} n-\pi^{*}$ electronic state.

Molecular orbitals and their energies were calculated for the $C_{2 v}$ ground-state equilibrium geometry by using the 4-31G basis set. ${ }^{3}$ In acetone all Γ_{λ} of the $C_{2 v}$ group are symmetry species for vibrations. For all Γ_{λ} the f_{λ} are given in Table II. A linear combination of the symmetric $\left(a_{1}\right)$ and asymmetric (b_{1}) carboncarbon stretching coordinates is incorporated into the pathway for the α-cleavage which is observed experimentally. ${ }^{7,8}$ The smallness of the $f_{\mathrm{a}_{1}}$ and $f_{\mathrm{b}_{1}}$ values found in this work, however, as compared to the other f_{λ} values (see Table II), shows that the excited-state geometry is not reached along a pathway containing

[^2]Table II. Acetone in Its First $n-\pi^{*}$ State ${ }^{a}$

Γ_{λ}	MO	interacting with MO	f_{λ}
a_{1}	$3 \mathrm{~b}_{2}$	$\begin{aligned} & 4 \mathrm{~b}_{2} 5 \mathrm{~b}_{2} 6 \mathrm{~b}_{2} \\ & 8 \mathrm{~b}_{2} \end{aligned}$	23.144
	$\begin{aligned} & 5 b_{1} \\ & 3 b_{2} \end{aligned}$	$4 \mathrm{~b}_{1} 3 \mathrm{~b}_{1} 2 \mathrm{~b}_{1}$	43.605
a_{2}		$\begin{aligned} & 9 b_{1} 10 b_{1} 11 b_{1} \\ & 12 b_{1} 13 b_{1} 14 b_{1} \\ & 15 b_{1} \end{aligned}$	
	$5 b_{1}$	$2 \mathrm{~b}_{2} 1 \mathrm{~b}_{2}$	
b_{1}	$3 b_{2}$ $5 b_{1}$	$\begin{aligned} & 2 a_{2} 3 a_{2} 4 a_{2} \\ & 8 a_{1} 7 a_{1} 6 a_{1} \end{aligned}$	24.956
b_{2}	$3 \mathrm{~b}_{2}$	$5 a_{1} 4 a_{1}$ $9 a_{1} 10 a_{1} 11 a_{1}$ $12 a_{1} 13 a_{1} 14 a_{1}$ $15 a_{1} 16 a_{1} 17 a_{1}$ $18 a_{1} 19 a_{1} 20 a_{1}$ $21 a_{1}$	40.313
	$5 \mathrm{~b}_{1}$	$1 a_{2}$	

-The symmetries of distortion, Γ_{λ}, the interacting orbitals and the corresponding efficiency factors f_{λ} are given. Symmetry arguments alone favor the a_{2} - and b_{2}-coordinates as the relaxation pathway.

Figure 3. Contour lines of $\rho_{a}{ }^{\infty}$ of acetone in the $n-\pi^{*}$ state. The plane is parallel the molecular x, z-plane and intersects the y-axis at $y=0.5$ au. The projection of the nuclear framework onto the plane is indicated.
the symmetry coordinates which are important for the α-cleavage.
For $\Gamma_{\mathrm{a}_{2}}$ a large $f_{\mathrm{a}_{2}}$ value is derived (see Table II) which is consistent with the concept that for a favorable pathway a large number of orbitals should interact (see Table II). The a_{2} symmetry coordinates of acetone can only be made up of motions of the hydrogen atoms of the methyl groups. If they are an efficient relaxation pathway, the overlap function $\rho_{\mathrm{a}_{2}}{ }^{00}$ should have large functional values near the hydrogen atoms. A contour plot of $\rho_{\mathrm{a}_{2}}{ }^{00}$ is given in Figure 3 for a plane which is parallel to the molecular x, z-plane, and it intersects the y-axis at $y=0.5 \mathrm{au}$. The methyl groups are surrounded only by low functional values of $\rho_{\mathrm{a}_{2}}{ }^{00}$ (see Figure 3). Thus, in spite of the large $f_{\mathrm{a}_{2}}$, the form of the overlap function is unfavorable for an a_{2} motion of the methyl-hydrogen atoms. Near the atoms of the carbonyl group high functional values of $\rho_{\mathrm{a}_{2}}{ }^{00}$ are observed (see Figure 3). However, $\rho_{\mathrm{a}_{2}}{ }^{00}$ is antisymmetric with respect to the molecular x, z-plane, and therefore for these atoms the unfavorable case (f) holds (see Figure 3). Consequently, an a_{2} relaxation pathway on the $n-\pi^{*}$ energy surface should be of minor importance.

The magnitude of the f_{λ} values in Table II suggests that the b_{2} out-of-plane symmetry could be a symmetry for a relaxation pathway. For this symmetry species, a large number of orbitals is available for interaction (see Table II). Contour lines of the overlap function $\rho_{\mathrm{b}_{2}}{ }^{00}$ are given in Figure 4. Again, a drawing

Figure 4. Contour lines of $\rho_{b_{2}}^{\infty}$ of acetone in the $n-\pi^{*}$ state. The plane used is parallel to the molecular x, z-plane and intersects the y-axis at y $=0.5 \mathrm{au}$. The pyramidalization at the carbonyl carbon atom is indicated.
plane parallel to the molecular x, z-plane is used which intersects the y-axis at $y=0.5 \mathrm{au}$. Because $\rho_{\mathrm{b}_{2}}{ }^{00}$ is antisymmetric with respect to the molecular plane, the favorable case (a) holds for the atoms of the carbonyl group. Moreover, the carbon atoms of the methyl groups are situated in regions where the favorable case (a) is likely to operate (see Figure 4). Positive and negative values are located in space in such a way that pyramidalization of the carbonyl carbon atom is indicated (see Figure 4). For formaldehyde such a pyramidalization has been found experimentally ${ }^{9}$ and by extensive calculations. ${ }^{10}$ In S_{1} acetone the experimental out-of-plane angle turned out to be $28^{\circ} .^{11}$ By using the optical detection of magnetic resonance (ODMR) technique, Gehrtz et al. determined a value of $\approx 38^{\circ}$ for acetone in the T_{1} state. ${ }^{12}$ Our qualitative result is also supported by the recent experiments of Baba et al. ${ }^{13 a, 14 a}$ By using the supersonic jet expansion technique, they obtained vibrationally resolved fluorescence excitation spectra from the $\mathrm{n}-\pi^{*}$ state. The out-of-plane wagging and methyl internal rotations of the methyl groups turned out to be the dominant motions stabilizing the $n-\pi^{*}$ state of acetone. ${ }^{13 b, 14 b}$

The above analysis showed that the f_{λ} and the forms of the corresponding $\rho_{\lambda}{ }^{00}$ together constitute an appropriate tool for selecting energetically favorable directions on the first excited-state surface.

4. trans-Butadiene in the $\pi-\pi^{*}$ State

Polyene photochemistry is relevant for the process of vision, ${ }^{6}$ and of central importance to an understanding of it is how the electronic excitation energy in polyenes is transformed into nuclear motions. A detailed knowledge of the forms of the excited state potential energy surfaces of polyenes is therefore desirable. In the subsequent analysis the qualitative procedure proposed in the preceding paper in this issue is applied to trans-butadiene, the first member of the polyene series.

Molecular orbitals for trans-butadiene in its $C_{2 h}$ ground-state equilibrium geometry were calculated by using the 4-31G basis

[^3]Table III. trans-Butadiene in Its First $\pi-\pi^{*}$ State ${ }^{a}$

Γ_{λ}	MO	interacting with MO	f_{λ}
ag_{g}	$2 a_{u}$	$3 \mathrm{a}_{\mathrm{u}} 4 \mathrm{a}_{\mathrm{u}}$	2.521
b_{8}	$2 a_{u}$	$7 \mathrm{~b}_{\mathrm{u}} 8 \mathrm{~b}_{\mathrm{u}} 9 \mathrm{~b}_{\mathrm{u}}$	49.605
		$10 b_{u} 11 b_{u} 12 b_{u}$	
		$13 \mathrm{~b}_{\mathrm{u}} 14 \mathrm{~b}_{\mathrm{u}} 15 \mathrm{~b}_{\mathrm{u}}$	
		$16 b_{u} 17 b_{u} 18 b_{u}$	
		$19 \mathrm{~b}_{\mathrm{u}} 20 \mathrm{~b}_{\mathrm{u}}$	
	$1 b_{8}$	$7 \mathrm{a}_{\mathrm{g}} 6 \mathrm{a}_{\mathrm{g}} 5 \mathrm{a}_{\mathrm{g}}$	
		$4 \mathrm{a}_{8} 3 \mathrm{a}_{\mathrm{g}}$	
a_{u}	$2 a_{u}$	$8 \mathrm{ag}_{\mathrm{g}} 9 \mathrm{a}_{\mathrm{g}} 10 \mathrm{a}_{\mathrm{g}}$	39.166
		$11 a_{8} 12 a_{8} 13 a_{8}$	
		$14 \mathrm{a}_{\mathrm{g}} 15 \mathrm{ag}_{\mathrm{g}} 16 \mathrm{a}_{\mathrm{g}}$	
		$17 \mathrm{ag}_{\mathrm{g}} 18 \mathrm{ag} 19 \mathrm{a}_{\mathrm{g}}$	
		20 ag	
	$1 b_{8}$	$6 \mathrm{~b}_{\mathrm{u}} 5 \mathrm{~b}_{\mathrm{u}} 4 \mathrm{~b}_{\mathrm{u}}$	
$\mathrm{b}_{\text {u }}$	$2 \mathrm{a}_{\mathrm{u}}$	$2 b_{g} 3 b_{g} 4 b_{g}$	18.295
	$1 b_{8}$	$1 \mathrm{a}_{\mathrm{u}}$	

${ }^{a}$ The symmetries of distortions, Γ_{λ}, the interacting orbitals, and the corresponding efficiency factors f_{λ} are given. trans-Butadiene relaxes along b_{g} and a_{u} out-of-plane coordinates.

Figure 5. Contour lines of a superposition of $\rho_{\mathrm{bg}}{ }^{\infty}$ and $\rho_{\mathrm{au}}{ }^{\infty}$ for transbutadiene in the $\mathrm{B}_{\mathrm{u}} \pi^{-} \pi^{*}$ state. The plane shown is parallel to the molecular plane and intersects the z-axis at $z=0.5 \mathrm{au}$. The induced nuclear motions are indicated.
set. ${ }^{3}$ We assume that trans-butadiene is vertically excited into its $\pi-\pi^{*} B_{u}$ state. The f_{λ} were calculated for all Γ_{λ} of $C_{2 h}$. The numerical values recorded in Table III show that a relaxation pathway should be described by b_{g} and a_{u} symmetry coordinates (see Table III). Thus, the pathway should transform as a reducible representation Γ containing the two irreducible representations $\Gamma_{b_{g}}$ and $\Gamma_{a_{u}}$. All b_{g} and a_{u} symmetry coordinates of trans-butadiene are out-of-plane, but by using only the efficiency factors we are unable to determine which out-of-plane motion lowers the energy the most. Here, we supplement our analysis by inspecting the form of the overlap functions $\rho_{\Gamma}{ }^{00}$ for the reducible representation Γ

Contour lines for $\rho_{\Gamma}{ }^{00}$ are depicted in Figure 5 in a plane being parallel to the molecular x, y-plane and which intersects the z-axis at $z=0.5 \mathrm{au}$. The projection of the molecular skeleton onto the plane of drawing is also indicated. By inspection of Figure 5, we can see that the left most carbon atom in Figure 5 is surrounded by high functional values. Taking into account that $\rho_{\Gamma}{ }^{00}$ is antisymmetric with respect to the molecular plane, we observe that the favorable case (a) holds for that carbon atom. All other carbon atoms are located in spatial regions where either low functional values are present or where the unfavorable case (f) obtains. Thus, the form of $\rho_{\Gamma}{ }^{00}$ indicates that after an excitation into the $\pi-\pi^{*}$

Table IV. Methylenimine in Its First $n-\pi^{*}$ State ${ }^{a}$

Γ_{λ}	MO	interacting with MO	f_{λ}
a^{\prime}	$2 a^{\prime \prime}$	$3 a^{\prime \prime} 4 a^{\prime \prime}$	14.335
	$7 \mathrm{a}^{\prime}$	$6 a^{\prime} 5 a^{\prime} 4 a^{\prime}$	
$a^{\prime \prime}$	$2 a^{\prime \prime}$	$8 a^{\prime} 9 a^{\prime} 10 a^{\prime}$	64.344
		$11 a^{\prime} 12 a^{\prime} 13 a^{\prime}$	
		$14 a^{\prime} 15 a^{\prime} 16 a^{\prime}$	
		$17 a^{\prime} 18 a^{\prime} 19 a^{\prime}$	
		20a'	
	$7 \mathrm{a}^{\prime}$	$1 a^{\prime \prime}$	

${ }^{a}$ The symmetries Γ_{λ} of distortions, the interacting orbitals, and the corresponding efficiency factors f_{λ} are given. Methyleneimine relaxes along a" out-of-plane coordinates.
state, a significant pyramidalization of one terminal carbon atom occurs. The form of $\rho_{\Gamma}{ }^{00}$ near the hydrogen atoms bonded to that carbon atom also supports the deduction that pyramidalization occurs. Such a pyramidalization decouples one methylene group from the remaining allylic π-electron system, and the methylene group can then rotate about the remaining σ-bond. A rotation without pyramidalization is the classic prediction of Hoffmann, ${ }^{15}$ which has been confirmed by the extensive calculations of Bo-nacic-Koutecky et al. ${ }^{16}$ Aoyagi et al. performed a full geometry optimization for the A_{g} and B_{u} excited states of trans-butadiene by using the MCSCF procedure in the complete active space. ${ }^{17}$ The optimized geometries for the singlet excited B_{u} state, located above the singlet excited A_{g} state, show for the first time a local minimum at a planar geometry. ${ }^{17}$ However, a minimum with lower energy has been found where on terminal methylene group is rotated, and in this case it is also strongly pyramidalized by a flapping angle of $82^{\circ} .{ }^{17}$ Thus, our qualitative results are substantiated by extensive calculations.

5. Methylenimine

Methylenimine is the simplest of Schiff bases which show a wide range of ground-state and excited-state chemistry. ${ }^{18}$ One aspect of the $n-\pi^{*}$ photochemistry of substituted imines is the photochemical syn-anti isomerization about the carbon-nitrogen double bond. ${ }^{19}$ The isomerization pathway can be considered as a motion of the substituent at the nitrogen, and it can be in-plane (inversion) and/or out-of-plane (twisting). As a model compound for the syn-anti isomerization, methylenimine is investigated below. Our intention is to find the pathway along which methylenimine modifies its ground-state geometry after an excitation into the $n-\pi^{*}$ state.

An energy-minimized geometry of methylenimine ${ }^{20}$ was used; the molecular orbitals and their energies were calculated by using the $4-31 \mathrm{G}$ basis set. ${ }^{3}$ Methylenimine is considered to be excited into its $n-\pi^{*} \mathrm{~A}^{\prime \prime}$-state. The f_{λ} for the two irreducible representations a^{\prime} and $\mathrm{a}^{\prime \prime}$ and the corresponding interacting molecular orbitals are recorded in Table IV. The numerical values indicate that the first excited $\mathrm{A}^{\prime \prime}$ state should be stabilized by an $\mathrm{a}^{\prime \prime}$ out-of-plane relaxation pathway (see Table IV). In order to determine which out-of-plane motion is efficient, we inspect the form of $\rho_{a^{\prime \prime}}{ }^{00}$. Contour lines for $\rho_{a^{\prime \prime}}^{00}$ are given in Figure 6, by

[^4]

Figure 6. Contour lines of $\rho_{a^{\prime \prime}}{ }^{\prime \prime 0}$ for methylenimine in the $A^{\prime \prime} n-\pi^{*}$ state. The plane shown is parallel to the molecular plane and intersects the z-axis at $z=0.5 \mathrm{au}$. The resulting rotation about the double bond is indicated.
means of a plane being parallel to the molecular x, y-plane and which intersects the z-axis at 0.5 au . Because $\rho_{\mathrm{a}^{\prime \prime}}{ }^{\infty 0}$ is antisymmetric with respect to the molecular plane, we see that for the carbon and nitrogen atom the unfavorable case (f) operates. Consequently, motions of these atoms are not involved in the relaxation pathway. However, for all three hydrogen atoms, the favorable case (a) holds. Regions with positive and negative values of $\rho_{\mathrm{a}^{\prime \prime}}{ }^{00}$ are located in space such that an out-of-plane rotation about the carbon-nitrogen double bond is indicated. This qualitative result is substantiated by results of Bonacic-Koutecky et al., ${ }^{21}$ who calculated S_{1} and T_{1} potential energy surfaces as a function of the CNH in- and out-of-plane angles. The low-energy pathway on both surfaces involves primarily changing the out-of-plane angle; ${ }^{21}$ the in-plane angle remains almost unchanged. ${ }^{21}$ A rigorous dynamical treatment of this photoisomerization has been performed by Russegger, ${ }^{22}$ who shows that the out-of-plane motion on the T_{1} surface is the large amplitude motion along which the isomerization is driven, at least on the T_{1} surface. This surface touches the ground-state potential energy surface, and the isomerization is completed on the latter where the in-plane motion becomes effective. ${ }^{22}$ This is beyond the scope of our analysis, however.

The substantiation of our qualitative results by previous extensive calculations supports our proposal that the symmetry-based procedure given in the preceding paper is a qualitative tool to find relaxation pathways on the first excited state potential energy surface.

Acknowledgment. Many valuable comments and suggestions of Drs. H. Kupka, F. Mark, and G. Olbrich are gratefully appreciated. I am obliged to H. D. Schmitz for providing a versatile plot program.

Registry No. ethylene, 74-85-1; acetone, 67-64-1; 1,3-butadiene, 106-99-0; methylenimine, 2053-29-4.
(21) Bonacic-Koutecky, V.; Michl, J. Theor. Chim. Acta 1985, 68, 45.
(22) Russegger, P. Chem. Phys. 1978, 34, 329.

[^0]: (1) Bachler, V.; Polansky, O. E., preceding paper in this issue.

[^1]: (2) For a review, see: Mulliken, R. S.; Ermler, W. C. Polyatomic Molecules; Academic Press: 1981; p 223.
 (3) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1970, 54, 724.

[^2]: (4) Buenker, R. J.; Bonacic-Koutecky, V.; Pogliani, L. J. Chem. Phys. 1980, 73, 1836, Figure 8.
 (5) Berthier, G. In Quantum Theory of Chemical Reactions; Daudel, R., et al., Eds.; Reidel: Dordrecht, 1981; Vol. II, p 285.
 (6) Salem, L. Acc. Chem. Res. 1979, 12, 87.
 (7) Turro, N. J. Modern Molecular Photochemistry; Benjamin: Menlo Park, CA, 1978; p 528.
 (8) Lee, E. K. C.; Lewis, R. S. Adv. Photochem. 1980, l2, 1.

[^3]: (9) Jones, V. T.; Coon, J. B. J. Mol. Spectrosc. 1969, 3l, 137
 (10) Buenker, R. J.; Peyerimhoff, S. D. J. Chem. Phys. 1970, 53, 1368. Baba, M.; Nagashima, U.; Hanazaki, I. Chem. Phys. 1985, 93, 425.
 (11) Swalen, J. D.; Costain, C. C. J. Chem. Phys. 1959, 31, 1562.
 (12) Gehrtz, M.; Brauchle, C.; Voitlảnder, J. Mol. Phys. 1984, 53, 769.
 (13) (a) Baba, M.; Hanazaki, I. Chem. Phys. Lett. 1983, 103, 93 . (b) See ref 13a, Figure 2 and corresponding text.
 (14) (a) Baba, M.; Hanazaki, I.; Nagashima, U. J. Chem. Phys. 1985, 82, 3938. (b) See ref 14a, Figure 6 and corresponding text

[^4]: (15) Hoffmann, R. Tetrahedron 1966, 22, 521, Figure 5.
 (16) Bonacic-Koutecky, V.; Persico, M.; Döhnert, D.; Sevin, A. J. Am. Chem. Soc. 1982, 104, 6900.
 (17) Aoyagi, M.; Osamura, Y.; Iwata, S. J. Chem. Phys. 1985, 83, 1140 , in particular Figure 3 and Table I.
 (18) The Chemistry of the Carbon-Nitrogen Double Bond; Patai, S., Ed.; Interscience Publishers: New York, 1970.
 (19) See Wettermark, G. Photochemistry of the Carbon-Nitrogen Double Bond; in ref 18, p 565.
 (20) See ref 21, Table I.

